阅读:0       作者:严长生

哈夫曼(赫夫曼,哈弗曼)编码算法(带源码+解析)

实现哈夫曼编码的算法可分为两大部分:
  1. 根据所给各个元素所占的权重值构造哈夫曼树;
  2. 在哈夫曼树上求每个叶结点的编码;
例如,给定某 7 个字符出现的权值分别为: 3、12、7、4、2、8、11,由权重值建立的哈夫曼树为:


 
通过哈夫曼树,我们可以轻松获取每个叶子结点元素的哈夫曼编码,如权重值为 4 的元素的哈夫曼编码为:000。

对于给定的哈夫曼树,求其所有叶结点的实现方式有两种:
  1. 从叶子结点一直找到根结点,逆向记录途中经过的结点的权重值。
  2. 从根结点出发,一直到相应叶子结点,记录途中经过的所有结点的权重值。

采用方法 1 的实现代码为:
//HT为哈夫曼树,HC为存储结点哈夫曼编码的二维动态数组,n为结点的个数
void HuffmanCoding(HuffmanTree HT, HuffmanCode *HC,int n){
    *HC = (HuffmanCode) malloc((n+1) * sizeof(char *));
    char *cd = (char *)malloc(n*sizeof(char)); //存放结点哈夫曼编码的字符串数组
    cd[n-1] = '\0';//字符串结束符
  
    for(int i=1; i<=n; i++){
        //从叶子结点出发,得到的哈夫曼编码是逆序的,需要在字符串数组中逆序存放
        int start = n-1;
        //当前结点在数组中的位置
        int c = i;
        //当前结点的父结点在数组中的位置
        int j = HT[i].parent;
        // 一直寻找到根结点
        while(j != 0){
            // 如果该结点是父结点的左孩子则对应路径编码为0,否则为右孩子编码为1
            if(HT[j].left == c)
                cd[--start] = '0';
            else
                cd[--start] = '1';
            //以父结点为孩子结点,继续朝树根的方向遍历
            c = j;
            j = HT[j].parent;
        }
        //跳出循环后,cd数组中从下标 start 开始,存放的就是该结点的哈夫曼编码
        (*HC)[i] = (char *)malloc((n-start)*sizeof(char));
        strcpy((*HC)[i], &cd[start]);
    }
    //使用malloc申请的cd动态数组需要手动释放
    free(cd);
}

采用方法2 的实现代码为:
//HT为哈夫曼树,HC为存储结点哈夫曼编码的二维动态数组,n为结点的个数
void HuffmanCoding(HuffmanTree HT, HuffmanCode *HC,int n){
    *HC = (HuffmanCode) malloc((n+1) * sizeof(char *));
    int m=2*n-1;
    int p=m;
    int cdlen=0;
    char *cd = (char *)malloc(n*sizeof(char));
    //将各个结点的权重用于记录访问结点的次数,首先初始化为0
    for (int i=1; i<=m; i++) {
        HT[i].weight=0;
    }
    //一开始 p 初始化为 m,也就是从树根开始。一直到p为0
    while (p) {
        //如果当前结点一次没有访问,进入这个if语句
        if (HT[p].weight==0) {
            HT[p].weight=1;//重置访问次数为1
            //如果有左孩子,则访问左孩子,并且存储走过的标记为0
            if (HT[p].left!=0) {
                p=HT[p].left;
                cd[cdlen++]='0';
            }
            //当前结点没有左孩子,也没有右孩子,说明为叶子结点,直接记录哈夫曼编码
            else if(HT[p].right==0){
                (*HC)[p]=(char*)malloc((cdlen+1)*sizeof(char));
                cd[cdlen]='\0';
                strcpy((*HC)[p], cd);
            }
        }
        //如果weight为1,说明访问过一次,即是从其左孩子返回的
        else if(HT[p].weight==1){
            HT[p].weight=2;//设置访问次数为2
            //如果有右孩子,遍历右孩子,记录标记值 1
            if (HT[p].right!=0) {
                p=HT[p].right;
                cd[cdlen++]='1';
            }
        }
        //如果访问次数为 2,说明左右孩子都遍历完了,返回父结点
        else{
            HT[p].weight=0;
            p=HT[p].parent;
            --cdlen;
        }
    }
}

哈夫曼编码,从构建哈夫曼树,到得出哈夫曼编码的整个过程,其实现代码如下:
#include<stdlib.h>
#include<stdio.h>
#include<string.h>
//哈夫曼树结点结构
typedef struct {
    int weight;//结点权重
    int parent, left, right;//父结点、左孩子、右孩子在数组中的位置下标
}HTNode, *HuffmanTree;
//动态二维数组,存储哈夫曼编码
typedef char ** HuffmanCode;

//HT数组中存放的哈夫曼树,end表示HT数组中存放结点的最终位置,s1和s2传递的是HT数组中权重值最小的两个结点在数组中的位置
void Select(HuffmanTree HT, int end, int *s1, int *s2)
{
    int min1, min2;
    //遍历数组初始下标为 1
    int i = 1;
    //找到还没构建树的结点
    while(HT[i].parent != 0 && i <= end){
        i++;
    }
    min1 = HT[i].weight;
    *s1 = i;

    i++;
    while(HT[i].parent != 0 && i <= end){
        i++;
    }
    //对找到的两个结点比较大小,min2为大的,min1为小的
    if(HT[i].weight < min1){
        min2 = min1;
        *s2 = *s1;
        min1 = HT[i].weight;
        *s1 = i;
    }else{
        min2 = HT[i].weight;
        *s2 = i;
    }
    //两个结点和后续的所有未构建成树的结点做比较
    for(int j=i+1; j <= end; j++)
    {
        //如果有父结点,直接跳过,进行下一个
        if(HT[j].parent != 0){
            continue;
        }
        //如果比最小的还小,将min2=min1,min1赋值新的结点的下标
        if(HT[j].weight < min1){
            min2 = min1;
            min1 = HT[j].weight;
            *s2 = *s1;
            *s1 = j;
        }
        //如果介于两者之间,min2赋值为新的结点的位置下标
        else if(HT[j].weight >= min1 && HT[j].weight < min2){
            min2 = HT[j].weight;
            *s2 = j;
        }
    }
}

//HT为地址传递的存储哈夫曼树的数组,w为存储结点权重值的数组,n为结点个数
void CreateHuffmanTree(HuffmanTree *HT, int *w, int n)
{
    if(n<=1) return; // 如果只有一个编码就相当于0
    int m = 2*n-1; // 哈夫曼树总节点数,n就是叶子结点
    *HT = (HuffmanTree) malloc((m+1) * sizeof(HTNode)); // 0号位置不用
    HuffmanTree p = *HT;
    // 初始化哈夫曼树中的所有结点
    for(int i = 1; i <= n; i++)
    {
        (p+i)->weight = *(w+i-1);
        (p+i)->parent = 0;
        (p+i)->left = 0;
        (p+i)->right = 0;
    }
    //从树组的下标 n+1 开始初始化哈夫曼树中除叶子结点外的结点
    for(int i = n+1; i <= m; i++)
    {
        (p+i)->weight = 0;
        (p+i)->parent = 0;
        (p+i)->left = 0;
        (p+i)->right = 0;
    }
    //构建哈夫曼树
    for(int i = n+1; i <= m; i++)
    {
        int s1, s2;
        Select(*HT, i-1, &s1, &s2);
        (*HT)[s1].parent = (*HT)[s2].parent = i;
        (*HT)[i].left = s1;
        (*HT)[i].right = s2;
        (*HT)[i].weight = (*HT)[s1].weight + (*HT)[s2].weight;
    }
}
//HT为哈夫曼树,HC为存储结点哈夫曼编码的二维动态数组,n为结点的个数
void HuffmanCoding(HuffmanTree HT, HuffmanCode *HC,int n){
    *HC = (HuffmanCode) malloc((n+1) * sizeof(char *));
    char *cd = (char *)malloc(n*sizeof(char)); //存放结点哈夫曼编码的字符串数组
    cd[n-1] = '\0';//字符串结束符

    for(int i=1; i<=n; i++){
        //从叶子结点出发,得到的哈夫曼编码是逆序的,需要在字符串数组中逆序存放
        int start = n-1;
        //当前结点在数组中的位置
        int c = i;
        //当前结点的父结点在数组中的位置
        int j = HT[i].parent;
        // 一直寻找到根结点
        while(j != 0){
            // 如果该结点是父结点的左孩子则对应路径编码为0,否则为右孩子编码为1
            if(HT[j].left == c)
                cd[--start] = '0';
            else
                cd[--start] = '1';
            //以父结点为孩子结点,继续朝树根的方向遍历
            c = j;
            j = HT[j].parent;
        }
        //跳出循环后,cd数组中从下标 start 开始,存放的就是该结点的哈夫曼编码
        (*HC)[i] = (char *)malloc((n-start)*sizeof(char));
        strcpy((*HC)[i], &cd[start]);
    }
    //使用malloc申请的cd动态数组需要手动释放
    free(cd);
}
//打印哈夫曼编码的函数
void PrintHuffmanCode(HuffmanCode htable,int *w,int n)
{
    printf("Huffman code : \n");
    for(int i = 1; i <= n; i++)
        printf("%d code = %s\n",w[i-1], htable[i]);
}
int main(void)
{
    int w[7] = {3,12,7,4,2,8,11};
    int n = 7;
    HuffmanTree htree;
    HuffmanCode htable;
    CreateHuffmanTree(&htree, w, n);
    HuffmanCoding(htree, &htable, n);
    PrintHuffmanCode(htable,w, n);
    return 0;
}
运行结果:
Huffman code :
3 code = 0011
12 code = 10
7 code = 110
4 code = 000
2 code = 0010
8 code = 111
11 code = 01

有关哈夫曼树以及哈夫曼编码的详细讲解,请阅读《哈夫曼树》一文。